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In 1947, in his study of regular precessions, Grioli obtained a new 
particular solution for the problem of the motion of a heavy rigid body 

about a fixed point [ l] . This solution was expressed in article [ 21 

relative to a coordinate system, the axes of which are the principal axes 

of the inertial ellipsoid for the point of support. It turned out that 

analytically Grioli’s solution is characterized by two particular quadratic 

integrals of a definite type. 

In this article the problem of the existence of new solutions of a 

similar type is studied. A system of algebraic equations is constructed 

for the determination of the required parameters. Two solutions of this 

system are found and investigated. To the first corresponds Grioli’s case; 

the second leads to a new case of integrability [ 41. The conditions im- 

posed in this case on the moments of inertia can be fulfilled, if the 

body has cavities filled with an ideal incompressible fluid [3]. 

I.. Let 0 be the fixed point of the body, Oxyz coordinate axes fixed in 
the body, which are the principal axes of the inertial ellipsoid of the 

body for the fixed point. We shall denote the moments of inertia of the 

body for these axes by A, B, C. Let the center of gravity lie in one of 

the principal planes of the inertial ellipsoid, for example in the 0x2 

plane. 'lhe angle between the Ox-axis and the straight line going from the 

fixed point to the center of gravity of the body will be denoted by a. 

'Ihe product of weight of the body and the distance from the fixed point 

to the center of gravity will be denoted by 1. 'Ihe variables to be deter- 

mined are p, q, r, i.e. the projections of the angular velocity of the 

body on the Oryt axes, and y, yli y"; i.e. the projections of the unit 
vector on the same axes, with direction opposite to the direction of the 

force of gravity. These variables must satisfy the Euler-Poisson equations 
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A% = (B-C)qr +-Lly’sina, c$= (A-B)pq-Z7’cosa 

B$ =(C-A)rp+Zy”cosa-17sina 
(1.1) 

4 dt = ‘7’ -- q7”, d7’ 
dt = P7” - r7, w 

;st = Q7-Pprf (I.3 

‘lhree integrals of these equations are known: 

Apa+Bq2+Cr2+21(7cosa+7”sina)=2h (1.3) 

Ap7 + Bq7’ + Cry” = m (1.4) 

72 + 7’2 + 7”2 = 1 (1.5) 

where h and m are integration constants. 

Instead of yli we will introduce a new variable TV., and a new inde- 

pendent variable r , using the relations 

17’ = qrl, dr = qdt 

Under these conditions equations (1.1) give 

Ag=(B-C)r+I”sina, +(A -B)p-I”cosa 

d Bq’ 
- - = (C- A)rp+ly”cosa-17sina d7 2 

‘Ihe equations (1.6) will he linear in p and r if 

r’ = bp + b”r 

where b and b”.are constants to he determined. We have 

A2 =(B-C+b”sina)r+bpsina 

Cg =(A-B-bcosa)p-b’rcosa 

We will subject the constants b and bF.to the condition 

bsina B-C+bb”sina b” sin a 
A- B-bcosa = 

or bcosa 
-b”cosa A-B --B--C= 

1 

(l-6) 

(1.7) 

(1.8) 

(l-9) 

Eliminating with the aid of this equality b-.-from the first equation 

of (1.8), and b from the second, we shall have 

AA!= 
d7 A+B [tA - B, P sina+(B-C)rcosa] 

CS- 
(1 .lO) 

dr 
- -&[(A-B)psina+(B-C)rcosal 
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From equations (1.10) we have 

gp+A~r=n (1.11) 

From now on we shall assume the integration constant n to be different 

from zero. 

Hence, in the required cases of integrability the relation 

t7' = q(bp-+ b”r) (1.12) 

must hold, where the constants b and b" are restricted by condition (1.9). 
These constants have the dimension of the moments of inertia. 

'lhe second assumption consists in that q* must be a quadratic function 
of the variables p and F: 

(1.13) 

Fkpressions (1.12) and (1.13) are a generalization of the integrals 

holding in Grioli's solution, whose analytic expression is given in 

article [ 23. 

The right-hand side of expression (1.13) can be represented with the 

aid of (1.11). in the form 

Substituting for the product pr its expression in terms of p2, r*, II* 
from (l.ll), we write the relationship between p, q and F as follows: 

9' = spa -/- a*$ + e'n2 (1.14) 

As a consequence of (1.10) and (1.14), equation (1.7) leads to the 

following relation: 

We will transform the integral (1.3). 'Ihe substitution q2 in the form 
(1.14) gives 

Apz + Cra + B (EP% + rY’r2) + 2 (Zy cos a + ly” sin a) - 2h + Be’n2 = 0 (f-16) 

Instead of h, we will introduce the constant p, using relation 
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B&l2 - 2h = pn2 (1.17) 

Then, taking into account (1.111, equation (1.16) will be written as 

-lTcosa- ly"sina =$ 
c 

,&,"2 - 
A.+ sB + p-.p2 + 

From equations (1.15) and (1.18 ve find 

ly = up2 + a’pr + a”r2, ly” = cp2 + c’pr $- cNr2 (1 .lY) 

Here, for brevity, the notations 

a=- 
f 
A-/-~B+j$$+osa (1.2Q) 

a'= - 
C 
E!I B(B--C) 

A(A-B) 
c0Sa-_f~b"~I~7~~sioa-(C-_)jsina- 

ACbb” - 
(A-B)(B-qCosa 

a" =CP$ cosasina-+ 
I. 

Czb= 
C -I- E“B t B (A-_, 

I 
~0s a 

B c=sbx- sinacosa-$- A+eB+p 
A=b”a . 

(B fmla 1 

c~= EbB(B-‘)~osa__Er~~‘(‘-BB)sina C -4(.4--j C(B-CC) 
-((G-A)]cosa- 

p ACbb” 
-(A-B)(B-CC)Si”a 

i 

CZb” . 
C-f- E@B -+ p (A_- 

I 
slna 

are 'introduced. 

We shall pass to the integral (1.4). Instead of m, we shall introduce 
the constant p, using the equality Znr = p n 2. Taking into account form- 
ulas (1.191, (1.12) and (1.141, we have I 

Ap (up2 + a’pr + u’r2) + B (q2 $- E”r2) (bp + b”r) + 
+ Cr (cp2 +- c’pr + cnr2) -- pn3 + B (bp -+ U’r) e’n2 = 0 

Substituting for n in the above*expression, the left-hand side of the 
equality (1.111, gives a hcmogeneous polynomial of the third order in the 
variables p and F: 
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(UA + EBb) p3 + (U’A + cc + EBb”) p2r f (C’C -;- a”A + E”Bb) pr2 -t 

+ (c”c f E"&") r3 + e’B (by j- b”r) & p + -& r)” - 

+f *b” 
\.B-C 

(1.21) 

Hence the variables p and r are related by the expressions (1.11) and 

(1.21). Since n f 0, at least one of the coefficients in the left-hand 

side of (1.11) is not zero. Let it be the coefficient of p. Then expressing 

p in terms of r, and substituting into (1.21), an equation of the third 

order is obtained, which in the general case gives a constant value for 

r. To avoid this case, the requirement must be made that this equality 

be an identity in r, from which will follow the vanishing of the coeffi- 

cients of the unknowns in the polynomial (1.21). Thus we shall have, the 

equations 

AZ),“!2 

aA+sBb-!- e'Bb (B_-)2-~ 
ASb"a 

(B-C)S = O 

c"C + s”Bb” + e’Bb” ,AcrB,s - p (actb& = 0 

a’A + CC + EBb” + e’B ci&a + 2b (B _GK_ Bj 
[I I 

- 

A”Cb” eb 

--’ (B--)*(A-B) =’ 

ACbb” 

(B-C) (A-B) 3 - 

(1.22) 

(1.23) 

C2Abab” 
--1” (A_B)a(B-CC) =’ 

Substituting a and c"-from (1.20) in (1.22), we have two equations for 

the determination of ~1 and fi: 

++ pj& = e’B $ + [(b cos a - 2) EB - $1 (BA;b,z)a cos a 

gsina+p$B=e’B ~+[(b”sincc--~)~.B-_]‘~~~f’*~ina 

The determinant of these linear equations in l/2/3 and ~1 is equal, by 

virtue of (1.91, to unity. Therefore 

B - = e’B 
2 

(1.24) 
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@Bf; c OS a - +-sin a” - 
) 

_ bcosa -;),B -$]_ (B-c~3;;,;acosa + 

b”sinc/.-- + 
sNR C2 1 (A- B)2 sin a co8 a 

2 j CSba 

Substituting into (1.23) Q’~ c’> c, a” from (1.20), and /3, p from 
(1.24), we will have 

EEB -t_ Fd’B -+- G = 0, JJ”$‘B f_ F”& -,L G” = 0 

tC $$$(I-2$eosajcosa 

, 
&“+~~osa+&‘(+~ 

) 
sinacosa + 

3-A $+G(l-2+sina)sina 
, 

F=b” A (d-B) 
C(B-CC) 

sin a sin a + - 
[ 

a A,yrcff) G (I- 4m b” sina)] 

P”--~ c(B-c) cOSa - 
A (A -- Bj 

cosa_i 1 C(B--CC) b 
’ -z- (A-B) b“2, --- (1 - $ b cos a)] 

G=-$(C-2A)sina+- A~IsAr~~~asinaI_AC~~cosa 

G” = $ (A - 2C) cos a $ ,“;~~B~~~: cos a -k AC &$-G sin a 
(1.25) 

Equations ( 1.25) are used to determine rB and c ‘CB, and depend on A, 
B, C, b, by, a. They are independent of e ’ . 

We shall transform the integral (1.5). Substituting (1.19), (1.12), 
(1.141, (l.ll), we will have 

(up2 + a’j~r -t u”P)~ + (cp2 + c’pr + c”T~)~+ (bp -/- b”r)2 [opt $ 

E& the same reasoning as ahove regarding the polynomial (1.21), the 
homogeneous polynomial (1.26) is an identity in p and r. Therefore, its 
coefficients must he equal to zero. Taking into account expressions (1.201, 
we will have the following five equations: 
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sine a f b2 
A2b”B 

E -f e’ -(B _c)a I E 
/jab”2 2 

++ A+EB+p (B--)2 =A 
I 

A’b”* 
(R-C)’ 

b”2 
E”‘JB‘J- co9 a f bn2 E” + e’ 

caba 

(A-B)a + I 

+ + [C $ E"B + p ,AyE,a ]z = h C4b4 
(A - B)4 

EB b(B-cC) cosa 
A(A-B) - 

s”B~~~~~~sina- (C-A)‘]Z + 

Aacabapa 

+p* (B-C)*(A-B)a 
++[A+~Bffd t~A~‘;,,][C+s”B+rj Caba ]- (A-B)a 

- 2m’B2 s sin a cos a +’ 4b2b’12e’ 
(B--C) (A-B) + 

+ b2 [E’ + e’ (AcYB)a ]+b”2[E+e’ ,,“I”L,,]=~~,,~~~~~~.,, 

~B~sina[~B~~~~Gg))cosa--~“B~{~_Cq)sina-(C- A)] + 

ACbsb” B ACbb” 

+e’ (B-CC)(A-BB) + Z(B--)(A-B) A+cB+p (zz’z)p]+ 

+ bb” [B + e’ (z: :)a ’ 1 AWbb”s 

= 2h (B-C)s(A-B) 
(1.27) 

- e"B~cosa[EB~I~_C$)co~a--E"B~~Ag_~~sina-(C- A)]t 

ACbb”s % ACbb” 

+e’ (B-C)(A-B) ++- (B-C)(A-B) [ 

Caba 

C+E”B+p (A-E)” + 1 
-+ bb” 

[ 
E” + e’ tATLIa 1 = 2h 

AC3b3b” e2 

(B-C) (A-B)S A = -$ 

We shall substitute into equations (1.27) the quantity /3, defined by 

the first formula of (1.24). From the substitution in (1.2'7) of the ex- 

pressions for EB and r"B found from (1.25), we shall obtain a system of 

algebraic equations for the determination of e', A, b, b”; tan a. We will 

not write these equations in expanded form, since they are very unwieldy. 

Taking into account (1.91, we therefore have six equations relating the 

five aforementioned quantities. However, this system turns out to be com- 

patible. In particular, we succeeded in establishing two solutions: 

the first solution 

h= (A--B)'(B--P 
A’C’ N-4 - B) (B - C) + (A + C - B)2], (1.28) 

e,=2 (A--R)(B-CC) 
Aw2 ) b=Af;+;, b” = C’j&-$ (1.29) 

tga= - 
If 

B-C 

A-B (1.30) 
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the second solution 

)\Z + 
(C-A) (A -R)2 (C-B)2 (C - 2A)9(2C - PI)2 

HZ A‘s2 [ 3AC - B (A -i_ C) j HZ (1.31) 

e,=6(A--B)(C-B)(C-A) (C-2A)2(2C-A)e- 
H” f3AG - B {A _t C)] [3AC - 2B (A + C)] H” (1.32) 

b - -. - Ii v’ A--B 
3(C--A) C(C--zA) ’ 

6”= H 
3 (C-A) VT A (“z;l!?A, (f.33) 

where 
2C-A. 

lga=- 
2A-C v 

A (C -B) (X-A) 
C(A-B)(C-A) 

(1.34) 

H =:dA(C’--fS)(ZC--)y+c(A,-B)(C--2A)” (1.35) 

Substituting these expressions into (1.25) we find for the first solu- 

tion 
s L= &” -_ - I (1.36) 

and for the second solution 

El1 +cFs=- (2C -A) (C - 2A) 
[3AC- u(n -f-C)) (3AC-22u (A + C)J (1.37) 

Since in the formulas (1.28) to (1.37) A and C enter symmetrically, 
we let, without loss of generality, C > A. 

2. Let us consider the first solution. We conclude from (1.31) and the 
inequality C 3 A that 

Therefore (1.29) gives 

b = Acosa, b” =: Csittu (2.2) 

Substituting (2.21, (1.361, (1.29) into (1.11) and (1.14) we obtain, 
taking into account (1.301, 

pcosa+rsiria=v, p2-+r2=2v2-q2, v==---&-v(C--@(B--A) 

Hence 

p=sinblI/vZ--q2+vcosa, ~=--COSEy'V2----q2+vSi~cx 
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Instead of q, we shall introduce the variable (T, using the equality 

q = v sine. Then 

p ==1 v (cos a -f- sin a cos a), r = v (sin x - cos a cos 0). 

Formula (1.12) now gives 

ly’ = v2 sin s [_4 cos2 a + C sin? a + (A - C) sin a cos a cos 51 

We will obtain an equation for the determination of the dependence of 

CT on time by way of substitution of the quantities found in any of the 
first two equations of (l.l), taking into account (2.1): 

do 
--Z--V, 
dt 

a=--vt 

(the irrelevant integration constant is omitted). 

Therefore 

p = Y (eos a + sin a cos vt), q = - v sin vt, r = v (sin a - cos a cos *it) 

17’ = - v2 sin vt [A cos2 a f C sin2 a -+ (A - C) sin a Cos a cos vtf (2.3) 

Substituting (1.36), (1.29), (2.2) into (1.24), we find 

p= tc---R)tB-A) (2B_/j--_) 
A’%‘72 

I*= v/(.4-By3 (B--q 
A20 

After this, having obtained from (1.20) ewressions for a, a’j a”i c, 
, 

c> c “; and substituting these into formulas (1.19), we will find 

17 = Y? [C sin a cos vt + (C - B) cos a sin2 rt] 

Zy” = vz [ - A cos a cos vt + (A - B) sin 2 sin2 vt] (2.4) 

The cited integrability case of this Section has been obtainedand in- 

vestigated by Grioli I: 11 . Th is solution is given in article [ 21 in the 

form (2.3), (2.4). 

3. Let us investigate the second 
ing notations: 

C(A-B) (C-U) 
“‘p=l/’ (C-A)[3AC--B(A+C)] ’ 

solution. We will intoduce the follow- 

sinp = 
A(C-B) (XC-A) 

(C -A) [3AC - u (A -+-C) 1 

3n 
v=--H J 

AC(C-d)~A-~)(C-~)(C-~A)(~C-A) 
13AC - B (A + C) J 

(3.1) 

Taking these into account, together with the substitution (1.33), the 
expression (1.11) will be written in the form Ap cos p + Cr sin p = Y. 
The substitution of (1.32) and (1.34) into (1.11) gives 
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We find from the last two relations 

Instead of q, we shall introduce the new variable D using the equality 
Q = VK Sin 0, &f-SE? 

%r_: 
(C - 2.4) (ZC - A) 

3AC [3AC - B (A +- C)l- 
Then 

(3.4) 

‘tet us see what conditions must be satisfied by the positive quantities 
A, 8, C, in order that a, n, p, r be real, 

We c(mclude, as a conse~~nce of C > A from (1.341, that it is nec- 
essary f5r the inequality 

(C-B)(A-BB)fC--2A)>O 
to be satisfied. 

'Ihis is possible when: 

3) B>C>2A, 2) 2A>C>B>A, 3) C>2A>2B 

In the first case 

3~C-~((A+C)=-C(fB-ZA)-rl(~-..-C)<O 

-A(B-C)(2C-- A)3--C(B--A)(C--- 2A)3 < 0 

in the second 

3~C-_~(A-tC)-C(2A--)+A(C--~)>O 

A(C_~)(2C-A)3~C(~-~)(2A-C)~~o 

in the third 
3AC---_(A+Cf==A(2C--13)+C(~~-~)>~ 

A(C-B)(2C-A)3+ C(A-B)(C--2A)3> 0 

We see that the quantity II, determined fram the equality (1.31), is 
real in al.1 these cases. We conclude from (3.11, that v will also be real. 
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In the first case, the multiplier within the square bracket in equation 

(3.2) is negative, and the second factor 

sp - 2B 
Q 

2 3AC (A + C) 2v2 U(B-C)+C(2B-A) 

~- 
-- 

3‘AC (C-2,4) (K-A; = 3AC q2 (C - 2‘4) (ZC - A) 

is positive. Therefore, the first case must be disregarded, since, under 
these conditions, A2p2 + CG2 < 0. 

In the second case, formulas (3.1) give real values for cos p, sin p, 

but the expression under the radical in (3.3) is negative. In fact, 

is real, since 2B > 2 A> C. In this case and r are complex; therefore, 

the second case must also be disregarded. 

In the third case, which is characterized by the inequality C > 24 > 

2B, all quantities turn out to be real. hbreover C > A + B, which does 
not hold for a rigid body; however, this condition can be satisfied if 

the body has cavities filled with a fluid [ 31 . 

Substituting the found magnitudes into (1.12), we have 

f= v [B- 3Xf- 

(3.6) 
3AC (C-PA) (2C -A) 

[3AC - B (A + C)]S’z 
AC(A-B) (C-B) coso 
(C - 2A) (2C -A) 1 sine . 

The dependence of u on time is obtained from the first equation of 
(1.1) in the form 

where 

N da --= 
v dt 

k+k’cosg (3.7) 

k = v(C - 2A) (2C - A) [3X - 2B (A $- C)] 

k’=(A+C)v3(A-f3)(C-B) 

N = 3AC 1/3AC - B (A + C) (3.8) 

Having obtained from (1.24) the value of /rJ, we next find the coeffi- 
cients (1.20), after which, formulas (1.19) will give, taking into account 

(3.41, 
(3.9) 

7 = 3AC _ ;(A,+ C) {‘OS P [3A (’ - B, sina u + B (A -t C)] +3_4Gj sin p cos u} 

i 
‘f= 3AC-B((A+C) {sin p [3C (A - B) sin* a + B (A + C)]--3ACx cos p cos a} 
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Thus, the dependence of the variables p, q, r, y, y’, y” on time is 
found. Hence, the Euler-Poisson equations with the conditions 

C > 2A > 2B 

admit a solution, determined by 
(3.10) 

p = + (cos p + x sin p cos s), q = vx sin 0, r = -(Y+-(sinp-xcospcoso) 

and equations (3.6) and (3.9), where sin p, cos p, K, x, are determined 
from (3.1), (3.4) and (3.5) 

?J=-3ACJf&Ll&;+c) 

The variable (I is found from equation (3.7), taking into account (3.8). 

‘lhe validity of the obtained result can be verified directly by sub- 

stituting the solution (3.10), (3.6), (3.9) into equations (l.l), (1.2) 

and the integrals (1.3), (1.4), (1.5). 

Taking into account, for CL, the formula (1.24), we find from the re- 

lation Zm = /.d, that the constant of the surface integral m is equal to 

the constant v, introduced according to equation (3.1), 1.e. m = v. 

In problems which are reducible to an integration of the Euler-Poisson 

equations it is customary to choose, for the main variables, Eulerian 
angles. 

We shall introduce these angles as follows. 

The formula 

Apcosp+Crsinp- v (3.11) 

exPresses the condition that the projection of the vector (p, (I, I-) on 
the straight line having direction of the vector 

(Aces p, 0, Csinp) (3.12) 

remains constant. We will denote the angle between the vector (3.12) and 

the vector (y, y’,, yr.) by 0 : 

cos 8 = 
A7 cos p + CT” sin p 

1/A 
a c0S8p + C*sirPp 

or, taking into account (3.9) 

cos e = 
3[A*(C-B) crs2p + P(A- B)sirPpJsin2a 

13AC - B (A + C)] v/A* cos3p + O sinzp 
+ 

3AC(A-C)~sinpccspcrso+B(AfC)(Acos~p+Csin~p) 
(3.13) 

+ 
(3.K - B (A + C)] VA% mysap f Osin*p 
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The components of the vector (p, q, r-1 in the directions (3.12) and 

(y, y’., y”.) are the derivatives of the angle of spin 4 and the angle of 

precession $. ‘lhe projection of (p, q, r) in the direction (3.121 is, as 

can be seen from (3.11, v/d A’cos*p + C*sin*p. llence, we have 

It follows that 

Substituting in the last expression the values of the variables, which 

have already been found, we will find the dependence of d)/dt on u, and 

consequently also the dependence of the angle of precession on time. 

Since the projection of (p, q, r) on the straight line having direction 

(3.12) is constant, it is sufficient to examine, in order to conclude the 

investigation, what kind of curve-is described on the unit sphere with 

center at the fixed point by the apex, i.e. the point of intersection of 

this line with the sphere. 

We conclude from (3.71 that when k < k’, the variable u approaches 

asymptotically the value o*, determined by the relation 

cost’= -k/k’ 

Moreover, the variables p, q, r, respectively, approach asymptotically 
the constants p*, q*, r*, so that in the limit we have a permanent rota- 

tion. 

For k > k’-, u increases indefinitely with time, and the variable 8, 

as can be seen from (3. ll), is confined between the two limits omin and 

t9 ,,,ax. Consequently, the trajectory of the apex is confined between the 
parallels determined by these limits for 0. We will not investigate this 

trajectory. 
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